Equivalence of CFGs and PDAs
 Lecture 22
 Section 7.2

Robb T. Koether
Hampden-Sydney College

Fri, Oct 14, 2016

Outline

(9) Equivalence of PDAs and CFGs

- Proof \Leftarrow

2 An Example

- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4 Assignment

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow
(2) An Example
- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4) Assignment

Equivalence of PDAs and CFGs

Theorem (Equivalence of PDAs and CFGs)

- If G is a CFG, then there exists a PDA M such that $L(G)=L(M)$.
- If M is a PDA, then there exists a CFG G such that $L(M)=L(G)$.

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow
(2) An Example
- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4) Assignment

Equivalence of PDAs and CFGs

Proof (\Leftarrow).

- Given a PDA M, we must construct a grammar G that generates $L(M)$.
- Modify M so that
- M has a single accept state.
- M empties its stack before accepting.
- Each transition either pushes one symbol or pops one symbol, but not both.

The Variables

Proof (\Leftarrow).

- Every transition is of the form

$$
\delta(p, a, A)=(q, \lambda)
$$

or

$$
\delta(p, a, A)=(q, B C)
$$

where $p, q \in Q, a \in \Sigma \cup\{\lambda\}$, and $A, B, C \in \Gamma$.

The Variables

Proof (\Leftarrow).

- For $p, q \in Q$ and for all $A \in \Gamma$, we create a variable

$$
(p A q) .
$$

- The variable ($p A q$) is interpreted to mean
"We can get from state p to state q and, in the process, the net effect is to remove A from the stack."
- If it is obviously impossible to get from p to q at all, then we may disregard all variables ($p A q$).

The Variables

Proof (\Leftarrow).

- Transitions of the form

$$
\delta(p, a, A)=(q, \lambda)
$$

will produce productions of the form

$$
(p A q) \rightarrow a .
$$

The Variables

Proof (\Leftarrow).

- Transitions of the form

$$
\delta(p, a, A)=(q, B C)
$$

will produce productions of the form

$$
(p A s) \rightarrow a(q B r)(r C s)
$$

for all possible choices of states r and s.

The Variables

Proof (\Leftarrow).

The Grammar Rules

Proof (\Leftarrow).

- Since the stack starts with \mathbf{z} and ends empty, our start symbol is $\left(q_{0} \mathbf{z} q_{f}\right)$.

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow

(2) An Example

- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4) Assignment

Example

Example (Convert a PDA to a CFG)

- Find a grammar for the following PDA.

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow
(2) An Example
- Generate the Grammar
- Simplify the Grammar
(3) A Second Example
(4) Assignment

Example

Example (Convert a PDA to a CFG)

- $Q=\} p, q, r\}$ and $\Gamma=\{\mathbf{a}, \mathbf{z}\}$, so the variables are

$(p \mathbf{a p})$	$(q \mathbf{a} p)$	$(r \mathbf{a} p)$
$(p \mathbf{a} q)$	$(q \mathbf{a} q)$	$(r \mathbf{a} q)$
$(p \mathbf{a r})$	$(q \mathbf{a r})$	$(r \mathbf{a r})$
$(p \mathbf{z} p)$	$(q \mathbf{z} p)$	$(r \mathbf{z} p)$
$(p \mathbf{z q})$	$(q \mathbf{z q})$	$(r \mathbf{z q})$
$(p \mathbf{z r})$	$(q \mathbf{z} r)$	$(r \mathbf{z} r)$

Example

Example (Convert a PDA to a CFG)

- However, in this example, it is impossible to go from q to p, from r to p, or from r to q.
- So we may eliminate ($q x p$), ($r x p$), and ($r x q$), for all $x \in \Gamma$.
- The remaining variables are

$$
\begin{array}{ccc}
(p \mathbf{a p}) & & \\
(p \mathbf{a} q) & (q \mathbf{a} q) & \\
(p \mathbf{a r}) & (q \mathbf{a r}) & (r \mathbf{a r}) \\
\hline(p \mathbf{z p}) & & \\
(p \mathbf{z} q) & (q \mathbf{z q}) & \\
(p \mathbf{z r}) & (q \mathbf{z} r) & (r \mathbf{z} r)
\end{array}
$$

The Grammar Rules (Group 1)

Example (Convert a PDA to a CFG)

- The transitions of the first kind are

$$
\begin{aligned}
\delta(p, \lambda, \mathbf{z}) & =(r, \lambda) \\
\delta(p, \mathbf{b}, \mathbf{a}) & =(q, \lambda) \\
\delta(q, \mathbf{b}, \mathbf{a}) & =(q, \lambda) \\
\delta(q, \lambda, \mathbf{z}) & =(r, \lambda)
\end{aligned}
$$

The Grammar Rules (Group 1)

Example (Convert a PDA to a CFG)

- These give us the productions

$$
\begin{aligned}
(p \mathbf{z r}) & \rightarrow \lambda \\
(p \mathbf{a} q) & \rightarrow \mathbf{b} \\
(q \mathbf{a} q) & \rightarrow \mathbf{b} \\
(q \mathbf{z} r) & \rightarrow \lambda
\end{aligned}
$$

The Grammar Rules (Group 1)

Example (Convert a PDA to a CFG)

- The transitions of the second kind are

$$
\begin{aligned}
& \delta(p, \mathbf{a}, \mathbf{z})=(p, \mathbf{a z}) \\
& \delta(p, \mathbf{a}, \mathbf{a})=(p, \mathbf{a a})
\end{aligned}
$$

The Grammar Rules (Group 1)

Example (Convert a PDA to a CFG)

- These give us the productions

$$
\begin{aligned}
(p z s) & \rightarrow \mathbf{a}(p \mathbf{a} t)(t z s) \\
(p \mathbf{a} s) & \rightarrow \mathbf{a}(p \mathbf{a} t)(t \mathbf{t a s})
\end{aligned}
$$

for all possible choices of $s, t \in Q$.

The Grammar Rules

Example (Convert a PDA to a CFG)

- The production $(p \mathbf{z s}) \rightarrow \mathbf{a}(p \mathbf{a} t)(t \mathbf{z} s)$ represents

$$
\begin{aligned}
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} p) \\
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} p) \\
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} r)(r \mathbf{z} p) \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} q) \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} q) \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} r)(r \mathbf{z} q) \\
(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} r) \\
(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} r) \\
(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} r)(r \mathbf{z} r)
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- But we eliminate the impossible ones, leaving

$$
\begin{aligned}
x(p z p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} p) \\
x(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} q) \\
x(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} q) \\
x(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} r) \\
x(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} r) \\
x(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} r)(r \mathbf{z} r)
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- Similarly, (pas) $\rightarrow \mathbf{a}(p a t)(t a s)$ produces

$$
\begin{aligned}
(p \mathbf{a} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} p) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} q) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{a} q) \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} r) \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{a} r) \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} r)(r \mathbf{a} r)
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- The grammar, with start symbol (pzr):

$$
\begin{aligned}
(p \mathbf{z r}) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} r)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{z r})| \mathbf{a}(p \mathbf{a r})(r \mathbf{z r}) \mid \lambda \\
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z p)} \\
(p \mathbf{z q}) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} q) \mid \mathbf{a}(p \mathbf{a} q)(q \mathbf{z q}) \\
(p \mathbf{a} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} p) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} q)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{a} q)| \mathbf{b} \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} r)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{a} r)| \mathbf{a}(p \mathbf{a r})(r \mathbf{a r}) \\
(q \mathbf{a} q) & \rightarrow \mathbf{b} \\
(q \mathbf{z} r) & \rightarrow \lambda
\end{aligned}
$$

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow

(2) An Example

- Generate the Grammar
- Simplify the Grammar
(3) A Second Example
(4) Assignment

The Grammar Rules

Example (Convert a PDA to a CFG)

- Eliminate the production $(q \mathbf{z r}) \rightarrow \lambda$:

$$
\begin{aligned}
(p \mathbf{z r}) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z r})|\mathbf{a}(p \mathbf{a} q)| \mathbf{a}(p \mathbf{a r})(r \mathbf{z r}) \mid \lambda \\
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p z p) \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} q) \mid \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} q) \\
(p \mathbf{a} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} p) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} q)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{a} q)| \mathbf{b} \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} r)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{a} r)| \mathbf{a}(p \mathbf{a r})(r \mathbf{a}) \\
(q \mathbf{a} q) & \rightarrow \mathbf{b}
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- Eliminate the production $(q \mathbf{a q}) \rightarrow \mathbf{b}$:

$$
\begin{aligned}
(p \mathbf{z r}) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} r)|\mathbf{a}(p \mathbf{a} q)| \mathbf{a}(p \mathbf{a r})(r \mathbf{z r}) \mid \lambda \\
(p \mathbf{z} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p z p) \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{z} q) \mid \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} q) \\
(p \mathbf{a} p) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} p) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} q)|\mathbf{a}(p \mathbf{a} q) \mathbf{b}| \mathbf{b} \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} p)(p \mathbf{a} r)|\mathbf{a}(p \mathbf{a} q)(q \mathbf{a r})| \mathbf{a}(p \mathbf{a r})(r \mathbf{a} r) \\
(q \mathbf{a} q) & \rightarrow \mathbf{b}
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- Useless variables are ($p z p$) and (pap).
- Eliminate them and all productions that use them.

$$
\begin{aligned}
(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} q)|\mathbf{a}(p \mathbf{a} r)(r \mathbf{z} r)| \lambda \\
(p \mathbf{z} q) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{z} q) \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} q) \mathbf{b} \mid \mathbf{b} \\
(p \mathbf{a} r) & \rightarrow \mathbf{a}(p \mathbf{a} q)(q \mathbf{a} r) \mid \mathbf{a}(p \mathbf{a} r)(r \mathbf{a} r) \\
(q \mathbf{a} q) & \rightarrow \mathbf{b}
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- The variables (rzr), (qzq), (qar), and (rar) never appear on the lefthand side of any production.
- Eliminate them and all productions that use them.

$$
\begin{aligned}
(p \mathbf{z}) & \rightarrow \mathbf{a}(p \mathbf{a} q) \mid \lambda \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} q) \mathbf{b} \mid \mathbf{b} \\
(q \mathbf{a} q) & \rightarrow \mathbf{b}
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- Now (qaq) is useless, so eliminate it.

$$
\begin{aligned}
(p \mathbf{z} r) & \rightarrow \mathbf{a}(p \mathbf{a} q) \mid \lambda \\
(p \mathbf{a} q) & \rightarrow \mathbf{a}(p \mathbf{a} q) \mathbf{b} \mid \mathbf{b}
\end{aligned}
$$

The Grammar Rules

Example (Convert a PDA to a CFG)

- Finally, give the two remaining variables simple names S and A.

$$
\begin{aligned}
& S \rightarrow \mathbf{a} A \mid \lambda \\
& A \rightarrow \mathbf{a} A \mathbf{b} \mid \mathbf{b}
\end{aligned}
$$

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow
(2) An Example
- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4) Assignment

A Second Example

Example (Convert a PDA to a CFG)

- Find a grammar for the following PDA.

Outline

(1) Equivalence of PDAs and CFGs

- Proof \Leftarrow
(2) An Example
- Generate the Grammar
- Simplify the Grammar
(3) A Second Example

4) Assignment

Assignment

Assignment

- Section 7.2 Exercise 16.
- Simplify the grammar of Exercise 16.
- Find and simplify a grammar for the following PDA.

